Inverse positivity for general Robin problems on Lipschitz domains
نویسنده
چکیده
It is proved that elliptic boundary value problems in divergence form can be written in many equivalent forms. This is used to prove regularity properties and maximum principles for problems with Robin boundary conditions with negative or indefinite boundary coefficient on Lipschitz domains by rewriting them as a problem with positive coefficient. It is also shown that such methods cannot be applied to domains with an outward pointing cusp. Applications to the regularity of the harmonic Steklov eigenfunctions on Lipschitz domains are given. Mathematics Subject Classification (2000). 35J25, 35B50, 35B65.
منابع مشابه
Uniqueness Theorems for Inverse Obstacle Scattering Problems in Lipschitz Domains
For the Neumann and Robin boundary conditions the uniqueness theorems for inverse obstacle scattering problems are proved in Lipschitz domains. The role of non-smoothness of the boundary is analyzed.
متن کاملA remark on Lipschitz stability for inverse problems
An abstract Lipschitz stability estimate is proved for a class of inverse problems. It is then applied to the inverse Robin problem for the Laplace equation and to the inverse medium problem for the Helmholtz equation. Key-words: Derivative in the sense of Fréchet, Lipschitz stability, inverse Robin problem, inverse medium problem ha l-0 07 41 89 2, v er si on 1 15 O ct 2 01 2 Une remarque sur ...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملNonlocal Robin Laplacians and Some Remarks on a Paper by Filonov
The aim of this paper is twofold: First, we characterize an essentially optimal class of boundary operators Θ which give rise to self-adjoint Laplacians −∆Θ,Ω in L (Ω; dx) with (nonlocal and local) Robin-type boundary conditions on bounded Lipschitz domains Ω ⊂ R, n ∈ N, n ≥ 2. Second, we extend Friedlander’s inequalities between Neumann and Dirichlet Laplacian eigenvalues to those between nonl...
متن کاملRobin-to-robin Maps and Krein-type Resolvent Formulas for Schrödinger Operators on Bounded Lipschitz Domains
We study Robin-to-Robin maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains in R, n > 2, with generalized Robin boundary conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011